Utilizing RNA-Seq data for de novo coexpression network inference

نویسندگان

  • Ovidiu D. Iancu
  • Sunita Kawane
  • Daniel Bottomly
  • Robert P. Searles
  • Robert Hitzemann
  • Shannon K. McWeeney
چکیده

MOTIVATION RNA-Seq experiments have shown great potential for transcriptome profiling. While sequencing increases the level of biological detail, integrative data analysis is also important. One avenue is the construction of coexpression networks. Because the capacity of RNA-Seq data for network construction has not been previously evaluated, we constructed a coexpression network using striatal samples, derived its network properties and compared it with microarray-based networks. RESULTS The RNA-Seq coexpression network displayed scale-free, hierarchical network structure. We detected transcripts groups (modules) with correlated profiles; modules overlap distinct ontology categories. Neuroanatomical data from the Allen Brain Atlas reveal several modules with spatial colocalization. The network was compared with microarray-derived networks; correlations from RNA-Seq data were higher, likely because greater sensitivity and dynamic range. Higher correlations result in higher network connectivity, heterogeneity and centrality. For transcripts present across platforms, network structure appeared largely preserved. From this study, we present the first RNA-Seq data de novo network inference.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Clustering of Short Read Sequences for de novo Transcriptome Assembly

Given the importance of transcriptome analysis in various biological studies and considering thevast amount of whole transcriptome sequencing data, it seems necessary to develop analgorithm to assemble transcriptome data. In this study we propose an algorithm fortranscriptome assembly in the absence of a reference genome. First, the contiguous sequencesare generated using de Bruijn graph with d...

متن کامل

Construction and Optimization of a Large Gene Coexpression Network in Maize Using RNA-Seq Data1[OPEN]

With the emergence of massively parallel sequencing, genomewide expression data production has reached an unprecedented level. This abundance of data has greatly facilitated maize research, but may not be amenable to traditional analysis techniques that were optimized for other data types. Using publicly available data, a gene coexpression network (GCN) can be constructed and used for gene func...

متن کامل

Construction and Optimization of a Large Gene Coexpression Network in Maize Using RNA-Seq Data.

With the emergence of massively parallel sequencing, genomewide expression data production has reached an unprecedented level. This abundance of data has greatly facilitated maize research, but may not be amenable to traditional analysis techniques that were optimized for other data types. Using publicly available data, a gene coexpression network (GCN) can be constructed and used for gene func...

متن کامل

Cosplicing network analysis of mammalian brain RNA-Seq data utilizing WGCNA and Mantel correlations

Across species and tissues and especially in the mammalian brain, production of gene isoforms is widespread. While gene expression coordination has been previously described as a scale-free coexpression network, the properties of transcriptome-wide isoform production coordination have been less studied. Here we evaluate the system-level properties of cosplicing in mouse, macaque, and human brai...

متن کامل

scphaser: haplotype inference using single-cell RNA-seq data

UNLABELLED Determination of haplotypes is important for modelling the phenotypic consequences of genetic variation in diploid organisms, including cis-regulatory control and compound heterozygosity. We realized that single-cell RNA-seq (scRNA-seq) data are well suited for phasing genetic variants, since both transcriptional bursts and technical bottlenecks cause pronounced allelic fluctuations ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Bioinformatics

دوره 28 12  شماره 

صفحات  -

تاریخ انتشار 2012